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A Modified Galerkin Procedure 
with Hermite Cubics for Hyperbolic Problems 

By Lars Wahlbin* 

Abstract. The Galerkin method, modified to include a term of artificial viscosity type, 

is applied to model problems for linear and quasilinear hyperbolic systems. Asymptotic 

error estimates are derived. 

1. Introduction. When solving hyperbolic problems numerically by finite-difference 
methods, one sometimes introduces, for various reasons, artificial viscosity. In this note 
we consider examples of the artificial viscosity technique applied to the numerical solu- 
tion of hyperbolic problems by the Galerkin method. 

Consider the 1-periodic initial-value problem for the real vector function u = 

u(x, t) with components u(i)(x, t), i = 1, . .. , N, given by 

(ut+?A(x)ux=O, xER,O<t?T, 
(1.1) 

u(x, 0) = uo(x), x ER. 

Here the real N x N matrix A(x) is 1-periodic and symmetric, and furthermore satisfies 

(1.2) A2(x) C1 > 0, x E R. 

Let Sh be a space of periodic piecewise polynomial functions on a uniform mesh 
of size h (h = 1 /n, n = 1, 2, . . .), and let Sh = (Sh)N. Define a continuous-in-time 

Galerkin approximation to the solution of (1.1) as a differentiable map U: [0, T] Sh 
such that 

(1.3) t(Ut + A(x)Ux, x) + Ch0(dU/dxi, diXJdxi) = 0, X E Sh, 

U(O) ESh- 

Here (v, w) = f'(iN l V(i)(x)w(i)(x))dx, C denotes a positive constant which is inde- 

pendent of h, and it is assumed that Sh C Ci-'(R). 

In this note we shall for brevity treat only a special case of (1.3); in order to 

handle other cases,the appropriate modifications in the proof are reasonably straightfor- 

ward. To motivate this special case, consider for a moment the ordinary Galerkin 

method, i.e., (1.3) with C= 0, from the point of view of asymptotic error estimates in 

L2. For B-splines the ordinary Galerkin method gives optimal (best possible for the 

space in which the approximation is sought) asymptotic rate of convergence. In con- 

trast, using the space of Hermite cubics, Dupont [2] has shown that the ordinary 

Galerkin method gives asymptotic rate of convergence h3 and not better, in general, 
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whereas the best possible rate is, a priori, h4. We ask then whether for Hermite cubics, 
the method (1.3) with C > 0 and j = 1 or 2 can give higher asymptotic rate of conver- 
gence for suitable a. The method of proof below gives the best asymptotic rate, h3*5, 
for j = 2 and a = 3.5, and some simple numerical experiments by the author indicate 
that this is the best one can obtain asymptotically, although for smooth solutions and 
"reasonable" h the ordinary Galerkin method may give smaller error. Hence, only the 
case mentioned above for the equation (1.1) will be treated. In Section 4 a similar 
example in a simple quasilinear situation will be considered. For related material see 
Dendy [11 and Wahlbin [41 where computationally more complicated Galerkin methods 
with optimal asymptotic rate of convergence for any space. Sh are discussed. 

In the rest of this note, Sh shall denote the space of periodic Hermite piecewise 
cubic functions, i.e., 

Sh = {X(x), x E [0, 1): the periodic extension of X lies in C1 (R) 

and XI(ih,(i+l)h) is a polynomial of degree S 3 for i = 0, . . ., n - 1}. 

We shall prove the following asymptotic error estimate. 
THEOREM 1.1. Consider the problem (1.1) and its semidiscrete analogue (1.3) 

with j = 2 and a = 3.5, where A(x) is periodic, symmetric, belongs to C2(R) and satis- 
fies (1.2). Assume that initial data for the Galerkin process are chosen such that with 
C2 a constant, 

(1.4) lluo - U(O)IIL2 S C2h3* 

Then there exists a constant C3 = C3(C, C1, C2, tAll ) such that 

IIU - 0 
(0, T: L2)< Ah3C L3{1 + IIUIIL (O,T: H4) 11 tilL2(0,T:H4) 

As an example of generalizations of this result to other spaces of piecewise poly- 
nomials, consider such of degree 2u - 1 which are in C' l (,u = 2 gives the Hermite 
cubics). With j = , and a = 2, - 1/2, one then obtains, under appropriate assumptions, 
an asymptotic rate of convergence h2M-1/2. 

After introducing notation and some preliminaries in Section 2, Theorem 1.1 will 
be proved in Section 3. In Section 4 the quasilinear example will be treated. This in- 
cludes the problem (1.1) when (1.2) is not fulfilled. 

2. Preliminaries. Throughout this note, C will denote a positive constant not 
necessarily the same at each occurrence unless subindexed. 

We first define some function spaces. For D C Rd and r a nonnegative integer, 
let C'(D) be the space of functions with r continuous derivatives on D, and with norm 

rI - taken as the maximum over D of derivatives of orders up to r. For IVector- 
Cr(D) 

valued functions let the norm be the maximum of the norms of the components. The 
symbol Cr will denote the space Cr(Rl) with each component 1-periodic. 

Furthermore, Hr will denote the space of N-vector functions v(x) where each com- 
ponent v(i)(x) is 1-periodic and has r derivatives in L2(Rl) locally, and with norm llvll, 
= (Y2rk(d;V/dXj, d V/dXj))1/2 where 
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(2.1) (v, w) =}o( v(i)(x)w(l)(x )dx. 

In particular, L2 = Ho with norm 11 1 = 11 I.lo 
For negative integers r define the norm 11 Ilr by duality over the L2 inner 

product (2.1) so that for v E L2 say, 

IlVllr = sup{l(v, w)0/IIwIILr: w E H_r IIWILr * O}, 

For a function v(x, t) with v(, t) in Hr for each t, let 

IIVIILP(O,T:Hr) -II IIV(, t)llrllLp(O,T) 
for 1 

Sp 
< oo 

We next collect two well-known approximation results for the Hermite spaces Sh. 
LEMMA 2.1. Let 0 < r < 4. There exists a constant C, independent of h, such 

that for v E Hr there exists X E: Sh such that for - 2 < 1 < min(2, r), 

lIv -Xill x Chr-lIlvIlr. 

LEMMA 2.2. Let G(x) be a periodic matrix function in C 3. There exists a con- 
stant C, independent of h, such that for X E Sh there exists 4' E Sh such that for 
O <r<2, 

1IG(x)X - 4llr < ChllyXllr 

Finally, we note the following elementary result. 
LEMMA 2.3 (INVERSE PROPERTY). There exists a constant C, independent of h, 

such that for XE Sh, 

(2.2) lIdrxIdxrIl < Ch-r+sIldsxIdxsII for 0 S s < r < 2, 

and 

(2.3) lidrIxCrIO < h- 1/2ldrx/dxrl for r = 0, 1. 

3. Proof of Theorem 1.1. We shall compare the Galerkin solution U(t) to a pro- 
jection W(t) of the solution of (1.1) into Sh, defined with p = u - W by 

(3.1) K(p, x) + (A(x)px, x) + Ch3X5(px,Xxx) = 0, XE Sh. 

Here K is a sufficiently large constant which can be estimated from the proof of 
Lemma 3.1 below. For the error in this projection we have 

LEMMA 3.1. Let the hypotheses of Theorem 1.1 hold, and let K be a sufficiently 
large constant. Then there exists a constant C = C(C, C1, IAIIC2) such that for each 
fixed t E [0, T], 

(3.2) IIpll SCh3511UII4, IIPti4 Ch31IlUtIj4. 

Proof Let C = C1 = 1 for simplicity. It suffices to prove the first inequality of 
(3.2) since the second will follow by the same method of proof upon differentiating 
(3.1) with respect to time. 

By the symmetry of A(x) we have for K large and X E Sh 
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11p112 + h3.5 IIP 112 

? K(p, u - x) + (A(x)px, u - x) + h3'(pxx, (u - X)Xx) 

? Klipil llu - xli + ClIpIl2 llu - XlL_ 1 + h3.5 llpxx 1111 u - X112 

S ?11p112 + ?hh3351pIPxxII2 

+ C{llu - X112 ? h3511u - xll2 1 + h3511u xll2. 

Choosing X by Lemma 2.1, we obtain 

(3.3) lIPIl < Ch 3-251 1lU114, 11PI12 < Chl 3 IIU114. 

Next use duality. Let f be the solution of the 1-periodic problem Kf - (Af)x + 

xxxx Using (1.2), it follows that 

(3.4) llfll1 < Clipli, h35Ilf114 < CIlpil. 

For x E Sh we have 

11p112 = K(p, f- X) + (Apx,f- X) + h35(pxx, (f- X)XX) 

<KllplllIlf- xiI + Cllp12 llf - xIL-1 + h35 IIPI12 llf- x112, 

and by Lemma 2.1 and (3.3) this gives 

11p112 < C{h3-25+1lif il1 + h'5 +2llf1ii + h3S +1.5+2 If 114}llull 

Then (3.4) implies that 11p112 < Ch35 IIPI lul14 which proves the lemma. 
We now prove Theorem 1.1. Let C = C1 = C2 = 1 for simplicity and put 0 = 

U- W. Then 

(0t + A(x)0x, X) + h35(0XX, Xxx) = (Pt, X) + K(p, X) - h3-5(Uxxxx, X)_ 

Let X = 0. By Lemma 3.1 we obtain 

gldlOll2 <C{110112 + h7(llull1 + llutll2)}. 2 dt4 4 

Since by (1.4) and Lemma 3.1 

110(0)11 6 jiu - U(O)ll + IIp(O)II 6 Ch35(1 + IuI 114), 

Gronwall's lemma implies that 

11011 00 2 < Ch 3.5{1 + IIUO 114 + lIUll 2 H)+ llutl 2 1 
L (O,T:L ) L (O,T:H 4) t L (0,T:H4) 

By Lemma 3.1 and the triangle inequality, this proves Theorem 1.1. 

4. Symmetrizable Quasilinear Systems. Consider the 1-periodic problem for the 
N-vector function u(x, t) given by 

- Ut + A(u)ux = O, x E R, O < t S< T, 
(4.1) R 

(u(x,O) = uo(x), x ER. 
Assume that this problem has a unique solution such that 
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(4.2) u E L'(0, T: H14), ut E L2(0, T: 114). 

Note that this implies by Sobolev's theorem that u(*, t) E C3. 
Let [yi) Iy(i)]- {u(')(x, t), x E R, 0 < t < T} and let for 8 > 0, M6= 

M[yQ - 8, y(i) + 8] C RN. The matrix function A( - ) is assumed to satisfy the 

following: 
(i) There exists i > 0 such that A( * ) E C3(M8). 

(ii) There exists a symmetric matrix function D( * ) E C3(M8) with 

(4.3) D(q) > C4 > 0, q E M8 , 

(4.4) D(q)A(q) = S(q), q ECM8, 

where S(q) is symmetric. 
Pose the Galerkin problem of finding U: [0, T] -- Sh such that 

?A(U)UX, X) ? Ch1013(UXX, XXX) = 0, XE Sh, 
(4.5) 

(U AXE 

'U(o) E Sh. 

We have the following asymptotic error estimate. 
THEOREM 4.1. Consider the problem (4.1) and its semidiscrete analogue (4.5). 

Assume that (4.2) and (i), (ii) are satisfied, and that there exists a constant C5 such 

that 

(4.6) 11u0 - U(0)112 <C5 h103. 

Then there exist positive constants ho and C6, depending on C, 8, IIA IIC3(M5)X C4, C5 

Iull 2(,T: H4) and IIUtiIL2(o T H4) 
such that for h < ho, the Galerkin solution exists 

for 0 < t < T and 

(4.7) llu - UIIL (O, T:L2) < C6h 

The method (4.5) generalizes to spaces of piecewise polynomials of degree 2u - 1 

which are in CM-i with the viscosity term taken as Ch2M-213(dMU/dxM, dMX/dxP) to 

give an asymptotic rate of convergence h2M-2/3. For an example of the ordinary 

Galerkin method in a similar situation, see Dupont [3]. 
Proof of Theorem 4.1. We shall compare the Galerkin solution to the projection 

W(t) of the solution of (4.1) into Sh given, with p = u - W, by the requirement 

(p, X) = 0 for X E Sh. As is well known,the following estimates hold: 

(4.8) lIPIlr < Ch4-rII uI4, r =-1, 0, 1, 2, 

(4.9) "Ptil < Ch4 IIUtII4. 

Let C = C4 = C5 = 1 for simplicity, and set 0 = U - W. 

We shall assume a priori that U exists for 0 < t < to0 that 

(4.10) U(tXx)EM8, 0 t<tot, 

and that 

(4.11) l ?oxilco <1, 0<t<to. 
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Note that lIIco + ?ip?ll CI<pII2 < CO2, and hence W E M614 for h small. The 
assumption (4.11) implies then that 

(4.12) IIUxlie 6<C, 06t6to, 

Also note that U(O)(x) E M8 /2 for ni sirtall, and hence we may assume that to > to(h) > 0 

by well-known local existence theorems for ordinary differential equations. 
We have for X E Sh that 

(?t + A(u)OX, X) + h1013(0Oxx xxx) 

(4.13) = ((A(u) - A(W) + A(W) - A(U))Ux, x) + (pt, x) 

+ (A(u)px, X) + h10/3(pxx, Xxx) - h 10/3(uXXXX, x). 

Let first X = D(u)O + R, where by Lemma 2.2 we may assume that 

(4.14) IIRII < ChilOll, IIRI12 < ChI1OI12. 

To handle various terms in (4.13) we note in particular (4.15)-(4.19) below. By (4.4) 
we have 

( t+ A(u)OX, D(u)O) 

(4.15) - 2 dtIID1/20112 - (D(u)tO, 0) + (S(u)Ox, 0) 
2 dt 

- ! dtIID1/20112 - (D(u)t0, 0)- - (S(u)X 0 0). 2 dt 2 X 

Further, by (2.2), 

(4.16) h1I13(0 xx D0xx) <h 10/3(0xx, (D0)XX) + CID1 /20112. 

From the a priori assumption (4.10) and from (4.12) we see that 

(4.17) I((A(u) - A(W) + A(W) - A(U))Ux, X)I < C(lIpIl + IlD /20jj1)jjx1j- 

By (4.8) we have 

(4.18) I(A(u)px, X)I < ClIpIl_I I X112 < Ch' IIxII2. 

Also, 

(4.19) Ih 10/3(pxx, Xxx)I < Ch5 1 x112. 

The results (4.13)-(4.19) imply, after some further simplification and using also 

(4.9), 

(4.20) t /20 ? h1/3 211D10 2xxl2 < C(lDl/20112 + h20/3) + !h2110 112 (42) 2 dt X 2 

Next let X = Ot in (4.13). We have then 

2 jjOt12 + 2hL0'3 dt ioxxlI2 < C(I0xJ2 + 110112 + h6). 

Inserting this into (4.20) and using (2.2),it follows that 

(4.21) 1 d (?ID'/20112 + h16/3iioxxjI2) < C(IID1/20112 + h20/3). 
2 d 
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By (4.6), (4.8) and (2.2) we see that 1ID 120( o)ii2 + h'6/3IIO x(0)II2 ? Ch2013, and 
(4.21) then gives via Gronwall's lemma and using (4.3), 

(4.22) 1jOI < C7h'013, 0 t to. 

By (2.2) and (2.3) this implies 1IOlo Ch 716. Since WEME /4 we have for 
h < ho with ho sufficiently small the following sharpenings of the a priori assumptions 
(4.10) and (4.1 1), viz.,that for 0 < t < to, U(t)(x) E M6 12 and 110x0lco < C8h 
Tracing the dependence of the constants above, it is seen that ho does not depend on 

to for to < T; and the constants C7 and C8 do not depend on h nor to for h < ho and 

to < T. Taking ho such that C8hol16 ? 1/2,it follows from local existence theorems 
for ordinary differential equations that existence of U(t) and (4.10), (4.11) can be asserted 
for 0 < t < to + e(h), where e(h) > 0 does not depend on to for to < T. Hence, by 
iteration, the Galerkin solution exists on [0, T] and satisfies (4.22). 

The desired result (4.7) now follows from (4.22) and (4.8) via the triangle inequality. 
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